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I. Phys. A: Math. Gen. 15 (1982) 3453-3463. Printed in Great Britain 

On the existence and uniqueness of non-commutative 
stochastic processes 

G 0 S Ekhaguere 
Department of Mathematics, University of Ibadan, Ibadan, Nigeria 

Received 8 October 1981, in final form 31 March 1982 

Abstract. We introduce a general notion of non-commutative stochastic processes over 
complete locally convex *-aloebras and prove a theorem concerning the existence and 
uniqueness of such processes. We show that quantum fields are stochastic processes in 
the sense of this paper. Moreover, we apply our theory to infer the existence and 
uniqueness of quantum fields. 

1. Introduction 

In this paper, we consider the notion of a non-commutative stochastic process in a 
rather general setting and we discuss the important question of the existence and 
uniqueness of such a process. A major aim of our presentation is to contribute to 
the foundation of a general theory of non-commutative stochastic processes. We see 
this as a worthwhile goal for, although non-commutative probabilistic methods have 
been employed by various authors in, for example, the discussion of non-commutative 
Markov fields (Ekhaguere 1979, Wilde 1974, Schrader and Uhlenbrock 1975), the 
existence and uniqueness of physical ground states (Gross 1972) and the quantum 
theory of open systems (Davies 1976), as far as this author is aware, unlike what 
obtains in the case of classical stochastic processes, there is as yet no general theory 
of non-commutative stochastic processes-a theory which is evidently desirable from 
both mathematical and physical points of view. 

This work has been motivated by the recent presentation of Accardi et aE (1981). 
Accordingly, the definition of a non-commutative stochastic process which we use in 
the sequel is analogous to the one introduced by Accardi (1976), but we do not require 
the algebras which appear in our formulation to be merely C*- or W*-algebras. The 
generalisation thus achieved is useful in, for example, quantum field theory (which is 
inherently probabilistic in a non-classical sense) where locally convex *-algebras, which 
are not necessarily C*- or W*-algebras, are encountered (Powers 1971, Lassner 
1975). 

The rest of the paper is organised as follows. Some of the concepts and notation 
which we employ in the sequel are introduced in 0 2. In 9 3, we develop our theory 
of non-commutative stochastic processes. This culminates in theorem 3.9 which 
concerns the existence and uniqueness of such processes. In 0 4, we demonstrate that 
quantum fields are examples of stochastic processes in the sense of this paper, and 
we apply the theory to infer the existence and uniqueness of quantum fields. 

0305-4470/82/113453 + 13$02.00 @ 1982 The Institute of Physics 3453 



3454 G 0 S Ekhaguere 

2. Basic concepts and notation 

Throughout the paper, every algebra is assumed to be an algebra with identity. 
Furthermore, if 'II is an algebra, we shall denote its underlying vector space by ?I"). 

In the sequel, we work with complete locally convex *-algebras. Recall that 'II is 
such an algebra if its underlying vector space 'II") carries a locally convex topology 
with respect to which (i) the vector space %(') is complete, (ii) the involution or 
*-operation of 'II is continuous and (iii) the multiplication operation (u~u2) -u lu2  of 
'II x 'II into 'II is separately continuous in each of the two arguments. 

Let (d, s )  be a directed set (with s as its ordering relation) and let {%', : a E d} 
be a family of complete locally convex *-algebras. Then {%'Lo): a E&} has a locally 
convex direct sum which we denote by VcO'. The vector space VcO) is the underlying 
linear space of a complete, locally convex *-algebra %' which is the locally convex 
direct sum of the family {%', : a E & } .  

Let g ,  be the canonical *-homomorphic imbedding of V, in %', a E.&'. Then we 
shall denote by Imb({V, : a E d}) the collection of families 

h = (hpa:  (a,  p ) ~ d  x d  and a s p )  
of continuous linear mappings with the following properties: for each h E 

Imb({V, : a E & } ) ,  with h = (hp,  : (a ,  p )  E d x d, a sp) ,  we have 
(i) hp, is a *-homomorphism of V, into %'@, a s p ;  
(ii) h,, is the identity *-automorphism of %', ; 
(iii) hvP 0 hpa = hya, for a s p s y ; 
(iv) the locally convex direct sum *-algebra Wh generated by the family 

It is evident that Imb({Va : a E d}) is never vacuous. 
For h E Imb({%', : a E d}), the quotient locally convex *-algebra %'/VI,, which is 

obviously complete, is an inductive limit, determined by h E Imb({Va : a E a}), of the 
family {%', : a E d }  of complete locally convex *-algebras. Inductive limits of complete 
locally convex *-algebras will be employed in the ensuing analysis. 

{(g, - gp 0 hpa)(W,): (a, p )  E d x d, a s p }  is a complete *-subalgebra of W. 

3. Non-commutative stochastic processes 

Let 'II be a complete locally convex *-algebra and let 'II* be its topological dual. Then 
a normalised member p of the positive cone of 'II* (i.e. a member p E 3: such 
that p(U) = 1, where U is the identity of 'II) is called a state on 'II. 

In the sequel, we shall refer to a pair ('II, p ) ,  consisting of a complete locally convex 
*-algebra 2f and a state p on 'II, as a probability algebra. 

3.1. Definition. Let {(B,, p,): a E&} be a family of probability algebras. We shall 
say that {pa : a E d} is a consistent family of states provided that there is some member 
h = (hp,  : (a ,  p )  E &  x d and a G p )  in Imb({B, : a E d}) such that p, = pp 0 hp, for all 
( a , p ) ~ d x d  w i t h a s p .  

3.2. Remark. We shall now introduce the notion of stochastic process considered in 
this paper. 

3.3 Definition. Let (a, p )  and 93 be a probability algebra and a complete, locally 
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convex *-algebra, respectively. By a (non-commutative) stochastic process over (a, p )  
with values in W and indexed by an arbitrary set r, we refer to a family {&: y E r} 
of continuous *-homomorphisms of % into W. 

3.4 Remark. Definition 3.3 generalises Accardi’s notion (1976) of a non-commutative 
stochastic process since neither CU nor 93 is required to be merely a C*-algebra or a 
W*-algebra. This generalisation is helpful in the study of quantum fields. Recall that 
a quantum field is a one-parameter family (possessing one of the Schwartz test function 
spaces as its parameter or index set) of densely defined linear operators on some 
Hilbert space. See the examples in § 4. 

3.5. The ordered set r. Given the arbitrary set r, let r, denote the n-fold Cartesian 
product of I? with itself and set r, = r. Then for each y in r, there is a positive 
integer # ( y )  such that 

y = (71, y2, ’ . . 9 Y l C Y ) ) .  

The set J? may be directed by means of a (reflexive, transitive and antisymmetric) 
relation < defined on r x F as follows: for (y,  y ’ )  E r x r, with y = (yl, y2, ,. . . , Y + ( ~ ) )  
and y’  = (yl ,  y4, . . . , yk(,,J, we shall write y < y’  if and and only if 

(1) # ( y )  S #(y ’ ) ,  where < is taken here as the natural ordering of the reals; 
(2) (71, Y Z ,  . . , YX(,J G { y  ’1, r6, . . . , rkc,,)}, and r: = yj, I’ = 1,2, . . . , # (7). 
In the sequel, any reference (whether implicit or explicit) to an ordering of r shall 

be a reference to the relation < just defined. 

3.6. Probability distribution functionals. Let {&: y E r} be a W-valued stochastic process 
on the probability algebra (8, p ) .  For y E I?, with y = (71, y2, . . . , yQ(,)),  let 93, denote 
the Cartesian product 

3, = 4 Y 1 ( W  x 4yz (w  x * 1 * x 4 Y + ( v )  (W. 
We remark that $33, is a *-algebra in a natural way. Furthermore, W, carries the 
induced product locally convex topology coming from the #(y)-fold Cartesian product 
9 3 X 9 3 X  . . .  x93. 

For y E r, with y = (yl, y2, . . . , yQcr)), let 4, denote the *-homomorphism of % 
onto 93, defined by 

3 a  -4&) = ( 4 y l ( a ) ,  4&), . . . , 4 , , ,&) )~  3,. 
Denote the kernel of 4, by ker(4,) and let r, be the canonical *-homomorphism of 
% onto %/ker(q5,). Then q5y 0 r, is a *-isomorphism of % onto W,. The map 4,, y E r, 
induces a linear functional p, on W, in the following way: 

py(b)  = p((4.y O T,)%~, (b, 7 )  E X r. 
The net {p,: y E r} of linear functionals on the corresponding locally convex 

*-algebras {By: y E r} has the following obvious properties: 
(1) p,(I , )  = 1, where U, denotes the identity of 93,; 
(2) p , ( b * b ) a O ,  for all b in 93,; 
( 3 )  the mapping (b, c ) - p , ( b * c )  of 93, X 93, into C, the complex numbers, is a 

In the sequel, the net {,U,: Y E  r} of states will be referred to as the family of 
sesquilinear functional on 3, x W,, y E I’. 

probability distribution functionals of the %valued stochastic process {&: y E r}. 
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3.7. Equivalence of stochastic processes. Let % be a complete locally convex *-algebra 
and let v E %:, Then there is (Powers 1971,1974) a closed strongly cyclic *-representa- 
tion p of 2l on a Hilbert space X, with inner product ( -  , *)%, and a strongly cyclic 
vector 6 in the domain of p ( . )  such that v ( a )  = (6, p ( u ) ( ) ~  for every a E 2l. 

We shall call (X, 6, p )  the Gelfand-Naimark-Segal (GNS) triple associated with the 
pair (%, v), v E 2:. The *-representation p is unique up to unitary equivalence. 

Let {& : y E I'} and {q5\: y E r} be two stochastic processes over the same probability 
algebra (%, p )  but with values in the complete locally convex *-algebras 9 and B', 
respectively. Set T;' 0 4;' 0 q5, = A ,  and TL-' 0 q5, 

Let (X,, t,, p,) and (Xb, (b, p b )  be the GNS triples associated with (X, p "A,)  and 
(a, p 0 Ab), respectively, for each y E I". Then we shall say that the %valued stochastic 
process {&: y E r} and the 6%'-valued stochastic process {q5;: y E I'} over a common 
probability algebra (%, p )  are equivalent provided that there is a unitary transformation 
U, of X, onto 2'; such that 

1-1 0 4 ;  =A;, y E r. 

6; = U&, and P : ( * ) =  U,,Py(*)U,' 

for each y E I'. 

3.8. Remark. We shall now state and prove our result in this paper. 

3.9. Theorem. Let {By: y E r} be a net of complete locally convex *-subalgebras of 
some fixed, complete, locally convex *-algebra. Let B be the complete locally convex 
*-algebra generated by uvp&33y. For y = (yl, y 2 , .  . . , y+c,J in r, set 

Bvl x iBv2 x . . . x 6%3ys,v)  = 9,. 

Let {(By, p,): y E I"} be a net of probability algebras indexed by the directed set I'. 
Suppose that the net {p,: y E r} of states is a consistent family. 

Then there exists a probability algebra (a, p )  and a 9-valued stochastic process 
{ d y :  y E r} over (a, p )  which possesses {p,, : y E r} as its family of probability distribu- 
tion functionals. Furthermore, the stochastic process {&: y E r} is unique up to 
equivalence. 

Proof. Let 93 be the locally convex direct sum of the net {By: y E r}. Then W is, in 
an obvious way, a locally convex *-algebra which is automatically complete. 

Since, by hypothesis, the net by: y GI"} of states is a consistent family, there is 
an h = (h,,,: (y ,  y ' )  E r x I", y < y ' )  in Imb({@,: y E I"}) such that 

PY = PY' hY%* 

Let g, denote the canonical imbedding of 93, in &I# and let Wk be the locally convex 
*-algebra generated by the *-algebras 

{(g, - g,, 0 h , m w :  (7, Y ' )  E r x r, Y 6 ~ ' 1 .  
Since h = (h,,,: ( y ,  7 ' )  E r x I', y < y ' )  belongs to Imb({B,: y E r}), by the definition 
of the latter, 9&, is automatically complete. Hence the quotient @ / a h  which is a 
complete locally convex *-algebra, is the inductive limit of the net {a,: y E r} deter- 
mined by h = (h,,,: ( y ,  y ' )  E r X  r, y < y ' )  in Imb({B,: y E r}). Put s/&, = %. If 6 is 
a member of a, we shall denote by [b] the equivalence class of b in %. 
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For each y in I', the canonical *-homomorphic imbedding g, of 9, in W induces 
a canonical *-homomorphic imbedding & of W,, in '?I defined thus: 

i, (b ) = [gy (b )I, b E BY. 

The maps {&: y E r} satisfy 

for all (y ,  y ' )  E r x with y < 7' .  Hence in view of its consistency relative to h = 
(h,,.,: (y ,  y ' )  E r x r, y < y ' )  in Imb({B,: y E r}), the net {py : y E I'} has an inductive 
limit which we denote by p. Evidently, p is a state on %. The pair ( 3 , ~ )  is the 
probability algebra whose existence was asserted. 

Next denote the canonical *-homomorphism of 93 onto '?I = L3/9i?~, by 17. For y E r, 
let P, be the projection of ,413 onto a,,, Since P, is the projection of a locally convex 
direct sum onto one of its summand spaces, it is continuous. For y ~ r  and y =  
(yl, y2, . . . , y+(,,)) E r, with y contained in the set {yl, y2, . . . , y+(,)}, let P t  be the 
projection of W, onto Way. Again, since P: is the projection of a Cartesian product 
onto one of its factor spaces, it is continuous. The stochastic process {&: y E r} whose 
existence was asserted is now obtained by setting 

y,, = P ;  0 P, 0 7J -l, E r. 
It is evident that d,,, y E r, is automatically continuous and is a *-homomorphism of 
% into 93. 

We claim that the family {&: y E r }  possesses the net {p,,: y E r }  of states as its 
family of probability distribution functionals. To prove this, for y E r, with y = 
(yl, yz, . . . , y+(,)), let 4, be the mapping, of % into 9, = 9,,1 x W Y 2  x . . . x W,,u(y), 
given by 

a "($,,(a) = ( 4 Y I b ) ,  4&), ' * * 9 4,,*&)), UE'?I, 

and denote the range of q5,, by ran(&). Let T, denote the canonical *-homomorphism 
of % onto %/ker(&). Let {v,,: y E r} be the net of probability distribution functionals 
of {&: y E r). Then by (3.6) 

vy(b) = p ((4% O T y ) - Y W ,  b E ran(&). 

Rut (&, 0 T J l  is merely the restriction to ran(&) of the canonical imbedding &, of 
93, into 3. Hence 

vy@) = (P O i y ) ( b ) ,  for all b E ran(&). 

But, since p is the inductive limit of the net {p,: y E r} of states, it follows that 

El. O 6% = P,. 

Hence {p,: y E r} is indeed the family of probability distribution functionals of {d,,: y E 

r}. The family {&: y ~ r }  is a %-valued stochastic process whose existence was 
asserted. 

Finally, to prove uniqueness up to equivalence, let 8' be some other complete 
locally convex *-algebra and suppose, that {d;: y E r} is a %?'-valued stochastic process 
over ( 3 , ~ )  which also possesses the net {p,: y ~ r }  as its family of probability 
distribution functionals. 
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Now, if A,, = T;' 0 4;' 0 q5,, and A ;  = T;-' 0 q5k-l 0 q5;, y E r ,  then the nets (II. 0 
A,,: y E r} and 0 A ;: y E r} of states on % are the probability distribution func- 
tionals of the W-valued stochastic process {&: y E I'} and the 93'- valued stochastic 
process {q5;: y E r}, respectively, over (a, p ) .  

Let (a%,, t,,, p,) and (a%;, &, p ; )  be the GNS triples associated with the probability 
algebras ($9, p 0 A,,) and (a, p 0 A I), respectively, y E r. Define the linear map 

U,: x, + x; 

UyP,(al)P,,(az) * ' P,,(an)Sy =Pt(al )P:(az) .  P;(an)5: 

as follows: 

for arbitrary (al ,  a2, , . . , a , )  belonging to the n-fold Cartesian product of with itself. 
Since the vectors 6, and [\, y E I?, are strongly cyclic, U,, extends to a continuous 
linear transformation of a%, onto a%;. Using the fact that 

for all a E a, (p  O A:) (a )  = (p  O A,)(a), 

it follows that U, is unitary, and we have 

6: = U,& 

p , , ( * ) =  UYP,(.)U,', y E r .  

{q5 ; :  y E r} over (a, p )  with values in W and B', respectively. 

and 

This concludes the proof of the equivalence of the stochastic processes {&: y E r} and 
U 

3.10. Remark. The general theory given above may be compared with the treatment 
presented by Accardi et al (1981) who introduce the notion of correlation kernels. 

4. Some examples of stochastic processes 

4.1. Quantum fields as  examples of stochastic processes 

Let R be the real line and Rd be the d-fold Cartesian product of R with itself. We 
shall denote by Y ( R d )  the Schwartz space (Schwartz 1957/9) of complex-valued C" 
functions which are rapidly decreasing at infinity and we shall write Y(Rd)' for the 
topological dual of Y ( R d ) .  

Let a% be a Hilbert space with inner product ( .  , .). We shall say that cp is an 
operator-valued distribution with domain in 5Y provided that: 

(i) for each f in Y ( R d ) ,  cp (f) is a densely defined linear operator with dense domain 

(ii) the mapping f -(cp(f)C, q )  of Y ( R d )  into C is in Y(Rd) '  for arbitrary 5, q 

(iii) the domain 9(cp (f)) is invariant for cp (f); 
(iv) the family q(Y) = { c p ( f ) :  f E Y ( R d ) }  has a common dense invariant domain in 

If c p ( f )  and cp(g), f, g E Y ( R d ) ,  are arbitrary members of cp(Y), then their sum 

9((cp(f)) in x; 
belonging to 9(cp cf ) ) ;  

%' which we denote by 9. 

cp(f)+cp(g) and their product cp(f)cp(g) will be taken in the sequel to be defined by 

(cP(f)+cp(g))t = cp(f)5+4(g)5, cp(f)cp(g)5 = cp(f)(cpk)5), [€9. 
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In quantum field theory, quantum fields are operator-valued distributions which 
satisfy certain assumptions called the Wightman axioms (Jost 1965, Streater and 
Wightman 1964). For simplicity, in the sequel, we shall only demonstrate that scalar 
quantum fields are examples of stochastic processes, as formulated in this paper. 

Let Bo be the polynomial algebra generated by rp(Y), i.e. an arbitrary member p 
of WO is of the form 

n = l  

where 1 is the identity operator on %f, fi E ~ ' ( R ~ ) ,  i = 1 , 2 , .  . . , n and ai E @, j = 
0 , 1 , 2 , .  . . , N. We shall denote by B the completion of Bo in the locally convex 
topology generated by the family {I I I * I I I D :  D is a finite subject of 9}  of seminorms 
defined by 

IIbIIb =SuP{l(P& 7))l: (6, 7))ED P E B o .  

In this topology, the operation * of taking the operator adjoint of a member of W is 
continuous. Hence 93 is a complete locally convex *-algebra with, U as its identity 
element. We shall work with the algebra 93 in the sequel. 

Next, let cp be an operator-valued distribution with domain in E;  symbolically, 
c p ( f )  may be written as cpu) = 5 dx cp(x ) f (x ) ,  f E Y ( R d ) .  For n 5 1, let (P,, denote the 
n-fold tensor product of cp with itself. Define cpo as the operator-valued distribution 
which may be written symbolically as vow) = (5 dx (f(x))U, f~ 9'(Rd), where U is the 
identity operator on X. Notice that if fn belongs to the n-fold tensor product Yn(Rd) 
of 9'(Rd) with itself, and fn = f n i ,  then cpn(fn) = cp(f,,~)cpcf,~) . . . c p ( f n n )  which is a 
member of B. 

In what follows, we write 2100 for the collection of all elements of the form 
O i = o a k ( ~ k ,  where f f k  E @ ,  k =0, 1 , 2 , .  . . , and 0 denotes direct sum. With 0 as 
addition and 0 as multiplication, %?loo is evidently an algebra which may be called the 
polynomial tensor algebra generated by cp. Furthermore, %?loo is a *-algebra with 
involution * defined as follows. For arbitrary @ ; = o f f k ( p k  belonging to %?loo, define 
(@k"=o f fkcpk)* by 

( & f f k V k ) * (  6 f k )  = f E k ( P k ( f - k )  
k =O k =O k=O 

where f o  E Y(R'), fk E 9 'k ( [Wd) ,  f-k is the complex conjugate of fk, k = I,  2, . . . , n, and 
ai€@, j = O ,  1 , 2 , .  . . , n .  

We remark that the *-algebra %?loo is not endowed with an identity element. 
Let 210 be the completion of %?loo in the locally convex topology determined by the 

family (11. I I D :  D is a finite subset of a} of seminorms defined by 

6 f k  E 6 y k ( [ W d ) ,  with =y1((IWd) =s(Rd)). 
k=O k=O 

Then 210 is a complete locally convex *-algebra without identity. 
Let %?l be the unitification of ?lo, i.e. 2l is the algebra obtained from 210 by adjoining 

an identity element to 2l0. Recall that 2l is merely the Cartesian product @xS?l0 
equipped with the product topology and that the element U = ( 1 , O )  E @ x %?lo is the 
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identity of 8. It is noteworthy that 8 is a complete locally convex *-algebra (with 
identity I) in a natural way. 

Let 
We now define a stochastic process { d f :  f~ Y(R ' ) }  over (8, w )  with values in 93 

and indexed by Y(R')  as follows: for arbitrary ( p , ~ i = o a k ( ~ k )  in C X % O O ,  set 

Y(R ' ) .  Since C x aoo is dense in 8 = C x i?Iu0, df has a unique extension (denoted again 
by df) to all of 8, Notice that df takes the identity element I =  ( 1 , O )  of ,U to the 
identity element I of W. Moreover, it is evident that & is a continuous *- 
homomorphism of ,U into 93 for each f~ Y ( R ' ) .  

Assume that the operators (~(9) = {cp c f ) :  f E Y(Rd)} satisfy the Wightman axioms, 
so that cp(9) is a scalar quantum field. Then one now sees how the latter arises in 
our formulation: the operators q(Y) = {cpcf): f~ .4p(R")} lie in the range (which is 
contained in 93) of the two-sided *-ideal 210 of 2l under the action of the family 
{&: f E Y ( R d ) }  of *-homomorphisms. 

be a state on %. Then (%, w )  is a probability algebra. 

~ r ( ( p , ~ i = O a k ( P k ) )  = p 1 + a ~ ~ ~ f ) + ~ i = 1  a k ( ( P ( f ) l k ;  inparticular,M(o, ( P ) ) = ( P ( ~ ) , ~ E  

4.2. Existence and uniqueness of quantum fields 

We shall next demonstrate how the existence and uniqueness of quantum fields may 
be inferred from our theory. Again, for the sake of simplicity, we confine the discussion 
to the case of scalar quantum fields. 

Set Y, (Rd)  = 9. In the sequel, we shall suppose that Y has been endowed 
with an ordering relation s as described in (3.5). Then (9, S )  is a directed set. 

Let W be an arbitrary complete locally convex *-algebra with an identity element 
1. For each f E Y ( R ' ) ,  set Wf = W and if f belongs to 9, with f = cfl, f2, . . . , f #u , ) ,  
define Bf by Wf = 9335, X Wf2 X . . . X Bfer,,. It is evident that Bf is, in an obvious way, a 
complete locally convex *-algebra with an identity element, which we denote by Of. 
Multiplication of two members of Wf will be denoted by juxtaposition. 

9, 
define M f ( Y , W )  by 

Let W = IJfEy Wf and M ( Y ,  W) = {all mappings from Y into 9). For each 

M f ( Y ,  W )  = {b E M ( Y ,  W ) :  b i f )  E Wf}. 
(1 )  ( 2 )  We remark that M f ( Y ,  W )  is a *-algebra if we define ab'"+pbi2 ' ,  (a ,  @)I E C 2 ,  b b 

and b* as follows: 

(ab + pb ( 2 ) ) (  f )  = ab ( I1(  f )  + pb '2'(f), 

( b ( l W 2 ) ) ( f )  = b'1)(f)b'2'cf), (b*)(f)  = b(f)*, 

for arbitrary 6, b"),  b '2 'EMf(Y,W).  
In what follows, U will denote the member of M f ( Y , W )  defined by Icf) = Uf. 
Since 93f is a_ *-algebra, it follows that 3; = Bf. Notice too that Wf = Bf, where 

f =  VI, f 2 ,  . . , , f # v J  is the complex conjugate of f E 9. Thus 93; = Bf. Now in 
what follows, we make the assumption that 

b (f)* = b (f) (4.11 

for each b(f) E Wf with f~ 9. 
In the subsequent discussion, we shall employ a family W(Y,9t?!= 

{WE' : v E N+ = the positive natural numbers, b E M ( Y ,  W ) ,  f~ Y }  of (Schwartz) distri- 
butions which possesses the following properties: 
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(i) for each v EN+ and b EMf(9,a),  b #I, Wb” is a distribution on the v-fold 

(ii) for each v E N+, W f ’  depends linearly on b E M f ( 9 ,  a), b # I, f E 9; 
(iii) for each b E Mf (9, a), f E 9, the distribution W%, b # 1 is non-negative in 

Cartesian product of .YPxy)(Rd) with itself; 

the sense that 

Wb”b cf, f )  5 0, 

for every f~ 9, b # I; 
(iv) wP’ ( f , f ,  . . . , f )  = 1, for all U, f ,  . . . , f )  E (Y+~) (R~) ) ” ;  
(v) if f ( l ) , f ( ’ )  belong to 9 with f(1icf(2), a ~ M p ( 9 , a )  with a(f‘”) = 

(aflq u f 2 q  . . . , ~ ~ ~ ~ 1 1 , )  and b E M ~ ( ~ , W )  with b(f‘*’) = ( u p ,  u f p ,  . . . , 
af,p, ,  1, . . . , l), then Wb” ( f ” ’ )  = W ,  (1) (f (1) ). 

4.2. Definition. For each f E 9, define a linear functional pf on Bf by requiring that 
for any v 3 1 arbitrary members b‘I i ( f ) ,  b”’(f), . . . , b‘”’(f) belonging to B,, 

@f(b‘l)Cf)b‘Z’(f) . . . b‘”’(f)) = W$lJb‘”. , , b““ (f, f ,  . . , f ) ,  fE 9. 

4.3. Remark 

on Bf, i.e. the pair (Bf, @I) is a probability algebra for each f E 9. 

B p  as follows: for 

( i )  Notice that as a result of the properties of members of W ( 9 ,  a), pf is a state 

(ii) For f ( 1 ’ , f ( 2 ’ ~  9, with f ( l ) ~ f ( ~ ) ,  define a *-homomorphism h p p )  of B p  into 

a(f‘ l ’ )  E Bfl1’, 

U ( f “ ’ )  = (Uf1(1’, a f i q  . . . , U f ~ 1 J * ( p l ) ,  

hf‘2Jf“’(a(f“’)) = (Ufl(l), Uf2“’, . . I , uf,y(’)), 1, . * . , 1) E ay. 

with 

set 

Then as a consequence of property (v) of the collection W(9,4iD) of distributions, we 
see that the net {pf:  9} of states is consistent relative to the family of *-homomorph- 
isms {hfq(1) : (f“’, f ” ’ )  E 9 x 9 with f ” ’ ~ f ‘ ’ ) } .  

(iii) We may now state and prove our final result concerning the existence and 
uniqueness of scalar quantum fields. 

4.4. Theorem. Let ((931, pf) :  
the foregoing. Then there exists 

(i) a Hilbert space (X, ( , )x) 
(ii) a family {cp (f): f E 9’(Rd)} of linear operators which, together with their adjoints, 

(iii) a unique vector 50 E 9, such that 

9) be the net of probability algebras defined as in 

possess a common, dense, invariant domain 9 in E, and 

(50, CP (fib (fz) CP ( f # y ) ) t o ) x  = p f ( b o ( f ) )  
for some fixed member bocf) E Bf and for all f~ 9. 

Moreover, in the case where 50 is cyclic for the polynomial *-algebra P(cp) generated 
by { c p ( f ) :  f~ 9’(Rd)), the quadruplet ((X, ( , )x), 5450, {cp(f): f~ 9’cRd)}) is unique up to 
unitary equivalence. That is, if ((X’, ( , >x?, g’, [A, {cp’(f): f~ 9’(Rd)}) is another quad- 
ruplet determined by some net {(a;, @;): 9) of probability algebras with 
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Proof. Since { ( a ,  Ff) :  f E 9'} is a net of probability algebras possessing the property 
that the net {g : f e  Y }  of states is consistent relative to the family { h p f " ) :  cf , f ) E  
Y x  Y withf'"sf'"} of canonical *-homomorphic imbeddings it follows from theorem 
(3.9) that there exists a probability algebra (a, g )  and a family {4f:fEY(Rd)} of 
*-homomorphisms of % into B such that 

for a E % and f e Y(R' ) .  

'1) ( 2 )  

4f (a 1 E Bf 
Let 

%* = { a  E 121: p ( a * a )  = O}. 
Then %, is a left ideal of %. 

Set %/a* =a. Then 9 is the complex linear space of all equivalence classes of 
% modulo a,. If a E %, denote the equivalence class of a by [ a ] .  Introduce an inner 
product ( , ) on 9 by 

( [ a ] ,  PI) = I * (a*b)  

for arbitrary a, b E a. This inner product is well defined. 
Let X be the completion of 9 in the norm-topology induced by ( ,  ). Then X is 

a Hilbert space with inner product ( , )x. It is the Hilbert space (X, ( , )x) whose 
existence was asserted in the theorem. 

For f E 9, with f = (fl, f2, . . . , f*~,), let if be the canonical *-homomorphic imbed- 
ding of 93f in %. Let 0 0  be a fixed member of % and set 

(4f1(ao)4f*(ao) * * 4f+[,,(aO), 1, * ' ' 3 1) = bo(!) E af. 
Then bo(!) is a fixed member of 93~ 

following prescription: 
For each Y(R'), we now define a linear operator cp( f )  on 9 c 2 through the 

c P ( f d c p ( f 2 ) .  . cp(fx(f))[Cl= [iAbo(f))cI, 

for arbitrary (c ,  f )  E % x 9'. Thus in particular, for f e Y ( R d ) ,  

cp(f)[cl= [ i f ( b O ( f ) k I ,  c E a. 

(cp(f)[Cl,  [ d l h  = ([cl, cp(f)[dI>* 

Notice that in view of equation (4.1) 

for all c, d E %, Moreover, it is evident that 9 is a common dense invariant domain 
for the family {cp(f): f~ Y ( R d ) } ,  together with their adjoints, of linear operators on 
(X, ( , )%). It is the family {cp (f): f E Y ( R d ) }  whose existence was asserted. 

Set [I] = to, where 1 is the identity element of a. Then CO E 9, and it is the vector 
whose existence was asserted. 
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P O if = Wf, f €9, 
Finally, we omit the proof of the uniqueness part because it is standard. 0 

4.5. Remark. The quadruplet ((X, ( , >x), 9,& { ~ ( f ) :  f~ 9 ( R d ) } )  described in the 
above theorem already satisfies some of the Wightman axioms for quantum fields. If 
we now require that the quadruplet satisfies the remaining Wighman axioms, then we 
have a scalar quantum field. Thus our theory of non-commutative stochastic processes 
affords, in particular, another way of discussing quantum fields. In the study of 
quantum fields, a number of different approaches have been considered (Segal 1963, 
Haag and Kastler 1964, Nelson 1973, Vel0 and Wightman 1973). However, in view 
of the inherently probabilistic nature (in an entirely non-classical sense) of quantum 
theory, a genuinely stochastic description of quantum fields, such as we present here, 
seems to us not only desirable but also worthwhile. 
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